用hadoop Hive协同scribe Log用户行为分析方案
scribe 是 开源的分布式日志系统,在其示例配置中,并发量可达到max_msg_per_second=2000000。54chen使用手记见:http://www.54chen.com/java-ee/log-server-scribe-helper.html hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为 MapReduce任务进行运行。54chen使用手记见:http://www.54chen.com/_linux_/hive-hadoop-how-to-install.html 下面来讲述二者合成的使用办法: 创建和scribe格式相符的hive table bin/hive
> create table log(active string,uuid string,ip string,dt string) row format delimited fields terminated by ‘,’ collection items terminated by “\n” stored as textfile;
加载数据
>LOAD DATA LOCAL INPATH ‘/opt/soft/hadoop-0.20.2/hive-0.7.0/data/log-2011-04-13*’ OVERWRITE INTO TABLE log;
查询
>select count(*) from log group by uuid;
进入mapreduce计算,过了一会儿,结果出来了。
修改已经定义数据格式 cutter.py 数据自定义脚本,从标准输入拿到数据后输出到标准输出
cd bin/
./hive
>add file /opt/soft/hadoop-0.20.2/hive-0.7.0/bin/hive-shell/cutter.py;
>select transform (active,uuid,ip,dt) using ‘python cutter.py’ as (active,uuid,ip,dt) from log limit 1;
得到格式化后的结果
>create table log_new(active string,uuid string,ip string,dt string) row format delimited fields terminated by ‘,’ collection items terminated by “\n” stored as textfile;
>INSERT OVERWRITE TABLE log_new select transform (active,uuid,ip,dt) using ‘python cutter.py’ as (active,uuid,ip,time) from log;
以hive server运行(thrift的server)
bin/hive –service hiveserver
默认以thrift service在10000启动服务。
用标准的thrift-jdbc来连接hive
public class HiveJdbcClient {
private static String driverName = “org.apache.hadoop.hive.jdbc.HiveDriver”;
/**
* @param args
* @throws SQLException
*/
public static void main(String[] args) throws SQLException {
try {
Class.forName(driverName);
} catch (ClassNotFoundException e) {
e.printStackTrace();
System.exit(1);
} Connection con = DriverManager.getConnection(“jdbc:hive://192.168.100.52:10000/default”, “”, “");
Statement stmt = con.createStatement();
ResultSet res = stmt.executeQuery(“select count(distinct uuid) from usage_new where active=‘user_login_succ’");
if (res.next()) {
System.out.println(res.getString(1));
} }
} 依赖的jar包(maven pom)
原创文章如转载,请注明:转载自五四陈科学院[http://www.54chen.com]
Posted by 54chen 架构研究